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ABSTRACT

This paper considers a class of variable metric methods for uncon: ra:ned
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aporopriate assumptions on the function to be minimized, each algorithm

class converges globally and superlinearly.

AMS (MOS) Subject Classification: 90C30

Key Words: Unconstrained minimization, variable metric method, global

superlinear convergence.

Work Unit Number 5 - Mathematical Programming and Operations Research.

Sponsored by the United States Army under Contract No. DAAG29-75-C-002/

ko el ki




Many practical problems in operations research may be reduced to minimizing

a function with or without contraints.

ETS—— LN

SICNIFICANCE AND EXPLANATION

A . Y.

By means of penalty functions and similar

techniques a constrained minimization problem can be converted into a sequence of

unconstrained minimization problems.

In this paper we discuss a class of algorithms

for unconstrained minimization problems which converge rapidly to the solution from

a starting point which is not necessarily a good approximation to the solution of

the given problem.

Availahili'y Codes

Accession For

NTIS GRA&I
DDC TAB
Unannounced
Justitrication_

e ———

By

Distribut o
py - *—b--———

Avall and/or

Dist special

A

The responsibility for the wording and views expressed in this descriptive summary
and not with the author of this report.

lies with MRC,

i

it el




Qb

ZOPR

5 e RN e ¢ AN o)

T

e

Andercrc - Lol

GLOBAL AND SUPERLINEAR CONVERGENCE

OF A CLASS OF VARIABLE METRIC METHODS

Klaus Ritter

1. Introduction

vVariable metric methods have been used successfully for iteratively calculating an aporox:-
mation to the least value of a function F(x) of n variables. A variable metric method
simultaneously generates a seauence of points (xj) and a sequence of matrices {HJ‘. buring
each iteration a correction matrix of rank one or two is added to “i with the intent to con-
struct an approximation to the inverse Hessian matrix of F(x).

A large class of such methods has been introduced by Huang [9]. This class contains sym- A
metric and unsymmetric matrices Hj. A restriction of the Huang class to update formulas which

are of rank two, satisfy the quasi-Newton eaquation and maintain the symmetry of "j leads to a

class of methods proposed by Broyden [1] and Fletcher [7]. Two well-know members of this class

|
are the Davidon-Fletcher-Powell-method (DFP - method), [4], [6], and the Broyden-Fletcher-
Goldfarb-Shanno-method (BFGS - method), [2], [7], [8], [16].
The first general global convergence result is due to Powell [12], [13] who proved that, 1

if F(x) satisfies certain assumptions and if the optimal step size is used, the DFP - method
converges superlinearly to a global minimizer of F(x). In [5] Dixon showed that under certain
conditions the methods in the Huang class generate the same sequence {xi) if they are started

with the same initial x , H

0 0 and if the optimal stev size is used. Under the idealized

assumption of an ontimal step size these two results provide therefore a complete converaence
theory. In practice, however, it is in general not possible to use an optimal step size. There-
fore, it is important to establish global convergence for a non-optimal step size.

One such result was obtained by Lenard [10] who generalized Powell's convergence nroot tom
the DFP - method. Another result is due to Powpll‘ll4l who proved that the BFGS - method con=
verges superlinearly with a step size procedure that eventually results in a steb size oqual to
one.

Using also a non-optimal stev size Stoer [17] showed that every method in a subclass of the

Broyden class, the so-called restricted Broyden-methods, converges n-step auadratically fo

g;bnsored by the United States Army under Contract No. DAAG29-75-C=0024.
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2 overy positive definite starting matrix Il0 and every initial value X sufficiently close :
: to a minimizer 2z of F(x).
; If it is assumed that both X, and “n are sufficiently close to 2z and the inverse :
3 ! Hessian matvix of F(x) at 2, respectively, then it follows from results obtained by Broyden,
; ; Dennis and More (3] that the DFP - method and the BFGS - mptﬁod converge superlinearly to =z 3
! with stop size one.
1 It 1s the purpose of this paper to show that with an appropriate non-optimal step size E
every method in the Broyden class converges globally and suverlinearly provided F(x) satisfies ;
certain assumptions. In the next section we derive a representation of the matrix H]. as a
; sum of n matrices of rank 1. This representation allows us to study the devendence of M‘)*l {
o on the parameters used in the update formula for "‘i and leads to a simple proof of Dixon's g
3 ~ result. 1In Section 3 global convergence is established. The proof is based on a generalization l l
: of Powell's proof for the BFGS - method. In the final section it is shown that the sequence i!
txi" converges superlinearly and that the sequences (Hllj”3 and {HH;IH} are bounded. & |
|
!
|
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2. Basic properties of variable metric methods

Let x ¢ E" and let F(x) be a real-valued function. If F(x) 1is twice differentiable

at a point X, we denote the gradient and the Hessian matrix of F(x) at x, by g - VF(x‘\

i 8 and Gx - G(x‘\. respectively. A prime is used for the transpose of a vector or a matrix. For

n
any x ¢« £, |Ix!| denotes the Euclidean norm of «x.

We consider the problem of determining a vector 2 such that
; n
F(s) < P(x)}) for all ¢ B .
i {‘ For later reference we formulate the following assumption.
Assumption 1.
l E F(x) is a convex function. There exists an X, such that the set
_{ Sy = {x[F(x) < Fixg)}

E is bounded, and such that F(x) is twice continuously differentiable on some convex oven set

4 containing So.

If a variable metric method is used to minimize F(x), then at a given point x

iy
search direction 8 is determined by multiplyinag the gradient q1 = VP(xi) by a appropriate
matrix "i' i.e.,
8, = H.g
i i

3 .

where H’ is an approximation to the inverse Hessian matrix of F(x) at xi. With a suitable

step size \'.‘ a new point

is computed. 1If g, = VF(x, .) # 0, the matrix H is determined from H, in such a way
i+1 1+l 1l s j

that the guasi-Newton equation is satisfied, i.e.,

2.1) H! < - = (0.8 .

‘ 3119y = Ty} = %

The various variable metric methods differ in the update procedure which is used to compute

H“1 trom N‘. In many methods N“1 is obtained by addina one or two matrices of rank one

o




to n‘. A large class of such methods has been studied by Huang {9] and Dixon [S5). With

a - . s
«‘1 - - *"“ ?’l' and 01 - W;Lr
It | 1', ' i"l '

their update formula can be written as follows:

(a,p'e d'li ) H'd, (B, pYei, JA'H )

3 9 . - . », -).l J...i__- -__.L..l
s T i Tk \\niu )d (R.p ohiu\i A
(¢ 0 Be 8 \ %A
o R o e e
2 2 2 2
where o, Ve Qg .41 and 8 are parameters such that ay *a, >0 am :*l + 8, >0 and it

: 15 assumed that the denominators are not 2ero.
The equation (2.1) 1s satisfied if and only if = 1, Therefore, we shall always assume
that o = 1. Under suitable assumptions the inverse Hessian matrix of F(x) is symmetric.

Since n‘ 15 intended to be an approximation to this matrix it is reasonable to restrict the

E
PAarameters in such a way that H1 is symmetric for all 3. With o = 1 we obtain from (2.2)
a o,
(2.3) "' - Rt & et —— p.p! ¢ --—'-'-‘"-“‘-'—""—‘ }‘.\"N. .
aLptea < < < ¢ d,
iel 1 \\“ ‘0\-‘111(‘\1‘ g | “1“1“.“11"1’ | - i B
a‘ 8. ]
Hld ) e WA AH
Ap ni .i N \\1 3 R opleg d'n,)d
(‘1’ HS i “l‘\ ‘\\1"1\$1
Thus, 1f N1 is symmetric then N“‘ is symmetric if and only if
2.4) ¢ .p ) = =R (¢ by P W b .
( ‘2‘“1"1“\ + x\)d‘u’d‘ x~‘(\‘\\‘xi \:d‘u‘d’)

Assuming £ ¢ 0 we can solve (2.4) for a This aives

1 )
pld, (8 Qt‘ Jgdin.d
T < o 1 T34
1 2 ] p d ;
1 1
Therefore, b
a, 9
ap! ¢ d, = = = id, ¢ BAtH A
\1| 1“1 + 0 1,"’\’ :;1 lrl|‘ ) x“!’n‘l‘
and " 4
. s
o Ro(pid +dn A )+8 \1‘N d
AR TERTAIy ot u. Yoo o i . 1 e T 1
aptd sa d'n A pld, (R a4, 'h‘d N d ) 3

1P %Y 1\!‘\




Substitution into (2.3) gives then the update formula for symmetric matyice:

» ‘A, edH A ) e d'H LA
(2.9) Wy, = N, +- ' Vi a1 Ul 0t O P}

141 y ‘)d (B }\1d Qh,\\ ‘N \1‘\

: p.A'H aH d 0! H.od d'H
PR e e R o e 3D
2 1 r\lp LT H\ d‘ll d 2 ulp d 8, 8 H d

The update formula (2.5) represents the subclass of the Huana class of update 2
the property that all matrices llj are symmetric and satisty the quasi-Newton egua
subclass is identical with a class of update formulas obtained by Brovden [l and ¢foyont
form by Fletcher (7).

First we consider three special case. 1If we choose xil = 0 then (2.4) implie:

and (2.3) reduces to

H,d d'H,
o i Bk ?i tn% ‘
¢ < ¢
"y j
. This is the update formula used in the Davidon-Fletcher=Powell = method (4], [6). Wie
and 8, = 0 we obtain from (2.5)
pld +d'H A, p,AH +R 4 p}
(2.6) N, . e H, + el poot - ol d 310
j+l y % 33 pla,
“\idi‘ 3 3

1.e., the update formula of the Broyden-Fletcher-Goldfarb=shanno = method (M), 7],

Finally i1f we choose :il =1 and 8, = =1, then (2.5 becomes

p.pl-p. a4 H =H.d plenw Q 'K
(2.7) H - N, ¢+ e i 0l M T 3 AJ..LJ..J‘L.‘. b
i+l ;! ‘\idi'd.i“idi

(0. =H. d ) (p'-dH,)
SRR - e L e s
i (p‘—d'n \.!
: Bl
This is a symmetric rank one update formula. Because the vectors Py ~ !i'\i‘ and

come (nearly) orthogonal it is, however, known to be unstable and not recommended to

Returning to the general formula (2.5 we assume that n‘ is pogitive detfinit




I‘i‘,' N.<‘l_—H‘A\l“I
and H., 4, = ~dd.d
. | Q

i

H.q.1]
|19, |

we observe that with

T }i'x = Q)
l X S

= {x|(H,9.)'x = (K g,
) §*4 { T

we have

3) H X = Hix for =

5. g
Laad

i+l

Since H‘ 18 positive definite, \15 J ‘l“ and 90 é Ti' Hence using
i

H,

je1 completely by defining it on

= spaniq. }
_.nm‘,ai”‘

as a sume of three matrices Settinag

FOr this purpose we write }11
H.a,
Py e, * % " T&eal
17325 1 55251
and choosing w, ¢ S such that w;vi = 0 and q = Hi\\', has norm one
i
p.p! Q.4
(2.9) H’ = ‘ﬂ‘;‘}{‘ ;',LJ + "‘) v
L 3 L X
o i il i
where H‘ 18 a symmetric matrix of rank n - 2 with
ﬁ,q. = H,w, = 0
3*3 1 s’
and
HXxwHRHRX fOr Xe'T, .
| i i
Note that "i can be written in the form
A L1 - T -
(2.10 My = i g
i=3 “13P43
where d, ,,...,d ., are vectors in T, such that
3) nj i
a! . n.d 0 1,X C PT, . 8 Ik
1} 3 R}
-

2.8) we can detemine

we have




sla o

and

= i | || = o i
“jdij Pyy with ‘!p“\l Yo dimiy n

S
”j'l jo1 on j we observe that dj

and "j are in Si and that the two vectors are linearly independent because dgpj # 0 and

Let

be determined by (2.5). In order to define H

wip. = 0. Since H satisfies the quasi-Newton equation we have

: e i+l
2.12) Hj*ldj Py -

Furthermore by (2.%5),

Slp d'q.+8_H . d.d!q

2
§PyrBydiHdy

a

(2.12) Hi’le - 1 - Sld

Thus Ni’le ¢ soaniqj.pj). Since

(2.13) d'H w, = ‘w, =0
i 5 e T

1t follows that, for every choice of the parameter: 8 and 8 is a vector in

1 2* Ha%

spanig..r, ' which is orthogonal to d

1% 4]

Let u, be a vector such that

| =1, atu, = 0, wau, >0 .

[ 33

u, ¢ svan{qi.pﬁ‘, [la

i 3

Since d‘ipi # 0 and wiyi = 0 it follows that ui exists and is uniquely determined. There-

fore, using (2.12) and (2.13) we have

Wiy oWy = W3 8.,
3¥173] n i

A

whevre .y 15 a number that depends on the particular values of the parameters ﬁx and R’

used to determine "101' Combining (2.8), (2.11), and (2.14) we see that

p,.p! u.u'

(2.15) I e ST e S T
j+1 djpj j wjuj j

Thus all matrices defined by (2.5) are of the form (2.15) and differ only in the

Hia
factor w,. Furthermore, if "j is positive definite and if d;pj > 0, then N141 is positive

Vs

B S —




detinite if and only if wy > O,

In order to study the dependence of on the parameters B8 and 8 more closely we
) ! ) 1 :

first determine Wy for the BFGS - method. From (2.6) we obtain

p d'i“'w\ d“q.
H, W, =H w, = -74L"=n.- .‘.J“
p 5 0 Sl | Ay dlv. 3 d'p. |
=3 il
= q, + > 5
}1 “l|
where o, = - d g ./d'p.,. Thus
3 s Bl
q.¥a.p,
(2.16) u, = ,—*‘L—J -, w, = |lq. + a p.” .
) Hq.+a . p.l j ) o i T
1 3 X
Observing that by (2.9)
d',}‘_ i (S 3N
Hd, =p, —dde 4 q, 14
i ) PL9LP ] w.q,
) 3 1l‘ 1
(d'p.)° (@'q.) "
(2.17) din.a, = —dd o ]
P.A.P., W
4 3758 i
we have for the general update formula (2.5)
ﬁl}“d'q.‘ﬁ,!l‘d.d'\]
H w, = q, - S ik (G e SRR 00 (80 Do e |
i+l 1 f.,dip . +8 . A'H.4
B (ol a
(d3q.)
. X 8 s 5 . J =]
s {(B.alp . +8 AN . &) “[(B.Alp ¢R. & H A =8 ——F Yq
T3 2323 l11.\w1.w‘o.‘ )
\1‘,_1‘,\‘?\]
- (B . da. +8 \l' J\p ]
- *.9.P, 1
g il
taln.)
: 8 d'p 48 —dd
diq. ¥4 3 O aipg
R »x- PRGN WL b, b
) da.p 3 ] di“ +8 d’H . d

Thus

(2.18) W, =Yy, '\-.mi-,u




B T o

sty

S e

;j‘
f
;
:
‘
)
E

"

he » -
wherd (dl.}‘ 3
8. A" p.+8 e
= 3 b: 0:9.p
(2.19) Ys * g & 3. a'H.d,
n p.*b X <
2 B e b SRS
and Tl \ if #_.= 0, i.e., for the BFGS - method. For the DFP - method we have - 0 an
l
[ U] T
(2.20) Y

p! * b.a'p.d'H.d.

s o il A0 (L8 T80

Assuming that d;pj » 0 and Hj is positive definite we see that the subset of tne un-

dating formulas (2.5) with

preserves the positive definiteness of Hi' More generally we have the following iesulit.

Lemma 1
Let H. be a symmetric positive definite matrix and assume that, for every 3, i;v. C
and H ) is determined by (2.5). Then "iol is positive definite for every 3j 1if and only
if at least one of the following two conditions is satisfied.
i) 5163 > O, 51 + 82 ¥ 0
d'o, a'H.a,
iy (B, + 8, -—J:J—J(B ¢ B Sy s
1 2 0p.,9'p, 1 Q2 Atp.
2 g T [
Prooft :
Observing that by (2.15) Hi*l is positive definite if and only if @, > 0 wc mmed.atel
3

see that the lemma follows from (2.18) and (2.19).

From (2.17) and (2.19) we obtain




(d'.q.)2

8. d'p,+8.d'H.d.-B
1 JpJ 27)

132 way
(2.21) Y., =
B.d'p.+B_d'H.d,
3 A e S
(dﬂq.)z
82 w.q.
=1 "

T R.d'p +B. d'H.d,
L85 2Rgiar g

If daqj = 0, then Yj =1 and, by (2.16), uj = q. and mj = 1. Therefore, it follows from

J
{£.15) that in this case Hj+l is independent of the parameters 61 and 82. Since
(gt =g et S =iot iy,
PO s s 5
253 11955511 115341

this happens if and only if gj and gj are parallel. Excluding this case we have the

+1

following lemma.

Lemma 2
Let Hj be positive definite and suppose that d:',,pj > 0 and d%qj # 0. If

B.d'p. + B_d'H.4. 0, then
2 el 5 3

i) y. =1 if and only if 32 =0

J
82
ii) y, > 1 if and only if ———————— < 0

j dip.+B8.d'H.4.

J Bl JpJ 32 3759
(s i 200

111y € < yj <1 if and only if Bl + 82 5. 0D, > 0 and either 82 > 0 or
JFdd
< 0 and dip, + B8, d!H.d. < 0 .
Ba - o 2RI

Proof:
The first statement of the lemma follows immediately from (2.21). Let 82 # 0. Suppose

first that B8.d'p, + B,d!H.d, > 0. By (2.21) we have y. > 1 if B_. <0 and vy, <1 if
195P5 i 0 £ e 2 b

82 > 0 in which case it follows from (2.19) that Yj > 0 if and only if Blojg(pi + Bzd;p. > 0.

J ]

Next let B . d'p, + 8, d'H.d, < 0. Then B, > 0 implies . >1 and B8, < 0 implies R
s e o Sl e e 2 : % 2 = 4

=10%




with » 0 if and only if B8.p.9'p., + B8.d4'p, > 0. Since f.4'p, + B.d'H 4 >0 if B, > 0
L ; 1 el Tl i 148 * Rae%s 2

and ﬁlviq}pi + de%pi 0, this completes the proof of the lemma.
The above lemma shows that all update formulas (2.5) with

R R 3
1112 >0, bl + 62 £ 0

O < < 1.
Yy

that corresponds to the DFP - method and the BFGS -

in addition to preserving the positive definiteness of llj produce a ‘i with

Let ‘i and {]. denote the value of ‘j

method, respectively. It is interesting to observe that, if d;p‘, > 0 and d;q‘ ¢ 0, 2.21)
i |

implies

for cvery \., corresponding to an update formula (2.5) with

For the results obtained so far we have only assumed that \’i 18 chosen in such a way
iip 0, i.e., u'i”pi < q'ipi' Now we assume that “‘) is the optimal step size; more

precisely let o be the smallest value of o such that

F(x, - 0.s8,) = min{F(x, - os,)|o ~ 0} .
) el 1 ]

on ‘x"’l]-j 0 and it follows from the definition of w1 that
{2.32) Wy & X where \ = Hli q ||-l .
| s fud .8 i+l ) i
Therefore, (2.15) becomes
PPl uu! g
”iO\ - l"l.}:l + u\). \-"};j—“’ + ||1.
dip. X
i i L7 i | s
and
W,
(2.23) I = H, .9 G e
+1 17941 A\
j s by j 41
i.e. the scarch directions at X441 computed by any of the matrices (2.5) ditfer only in the
tactor o . This oboorvation suggests a simple proof for a theorem due to Dixon [5] which

-11=
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essentially states that, if the optimal step size is used, all members of the class (2.5)

of update formulas produce the same sequence of points (xi).

Theorem 1

Let an initial point Xo and a symmetric positive definite matrix M0 be given. Suppose

that for every j, o is the optimal step size,

j

sj = quj. xj*1 = xj - ujsj
and "iél is determined by (2.5). Any choice of the parameters Rl and H2 for which
w’ > O L. @5 q;*)ﬁj*l » 0 for all j, results in the same sequence of points (xi‘.
Proof :

Suppose that, for some j, all matrices “i in the class generated by the update formulas

(2.5) have the form

piPi Po Pl
(2.24) TR T b Mol L ! R

} LSy WPy 3

where only wi-l depends on the particular values of B8 and R Since the optimal step size

1 2
is used i . s T
is used it follows that xj+l and qj*l are independent of wj-l Thus span{Hiqj, "1q)41
is independent of mj-l which implies that pj+1 = "j is independent of mj-l' Thus we can
write
. .
H, = 3" + PiaPin +H
- . . 3
3 i=1 qujnj ‘jnqjupju J

where xj.l = "quj01|!—l is independent of « and the matrix ﬁj is as defined in (2.10)

uj_l

and independent of w . Therefore (2.15) becomes

j=1

p.pl Py.1P4 :
L E;_i & T__iigﬁiil_, VH,
: ij ] j+lqj+lpj*l 1}

This representation of 1 is equivalent to the representation (2.24) of H, . Since (2.24)

lj+1

holds for j = 1, this proves the theorem.

-12-
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In practical computation aj differs from the optimal step size and numerical cxporicnce
shows that the efficiency of a variable metric method depends very much on the particular up-
date formula (2.5) which is being used. From (2.15) we obtain

L} L]
P94 ulg
0

-~ o A%
Bt * Ro%ia * Py agp, 3% W

Thus depending on p%gh1 and yj, i.e., on the closeness of the step size used to the optimal

step size and on the choice of B, and 82, the directions

1 sj+1 can differ considerably.

N "2



3. Convergence
For any initial point X, for which Assumption 1 is satisfied and any symmetric positive

definite matrix “u let  (x.! be a sequence with the followina properties

1) F(x Yy & Pty J e O, 000

fel i
) - -8 - [ > Dy = 0 TR
i x\.l x‘ ‘i‘, u‘ N1)‘ \‘ ( i [« 1% (S
115y W A s abtained from N‘ by (2.%) with arbitrary parameters ﬁ‘ and
8,.

Throughout the remainder of the paper we shall assume that, it necessary, the parameters

Hl and B, are adjusted in such a way that “101 is defined and positive detinite, i.e., that

the conditions of Lemma 1 are satistied.
It is the purpose of this section to show that if Assumption 1 is satisfied and n‘ is
point of the

chosen appropriately, then the sequence (q“ converges to zero and every cluster

sequence {x‘) is a global minimizer of F(x).

We shall prove this result by generalizing a proof due to Powell (14] for the case of the

BFGS = method, i.e., B, = 1, 8, = 0. Powell's proof uses the inverse of u\ rather than u‘.

1 3
Setting
3, = H
e
we obtain from (2.9 and (2.10)
P99 wuwl
(3.1) n, - .i',.‘LJ N w,;.J x
4Py 1y
whevre
1 - (R -
PR e TR

Similarly, (2.15) implies

(3.2) B

«]d=




B e S

PRy et

P

As a first step we derive a relation between the trace of l'l1 and the trace of Bjﬂ' By

]

sum of the diagonal elements of 81. Since with N’ the matrix l!j is positive definite, too,

definition the trace of B s equal to the sum of eigenvalues of B, which is equal to the

the trace of H‘ is positive. From (3.1) we obtain

2 2
o llagll llw !l
N(R)--l—.—luo——;l——otr(ﬁ) .
| aipy wiqj 3

Thus using (3.2) we have

2 2
o lla 1 Na i w12 llw, |l
(3.3) tr(s, )= tr(n,) - iq-,-“j——o T.l—- wji *wl v.ju
iy iy i § . N
2 2 2
o oyl fla, 1} fhw, 11
- tr(Bj) - - + —Jd' )—-- - (1 = _l.) _.v.j.' e z
%3Py "4 R

where the last equality follows from the definition of mj (see (2.18)) and

oy vie
(1.4) w'u, = - - —— —
13 laytaypyl  [l9yt Py

since ""‘»"n 0 for all ), we deduce from (3.3) the inequality

2 2
N 1y, v, Il
{3, nu\,'ly ”(“0, A e w—— s————
; i=0  “4Pi oo T AN

Next we establish a relation between the determinants of R”l and 111. For the special

vae of the BFGS - method, i.e., for Y, = 1, the result has been obtained by Pearson [11].

i

"‘“,'“.“ i
Let N, and “hl be defined by (3.1) and (3.2), respectively. Then
d'P
(3.6) det (H‘Hl) - ‘l- “‘e{]{" d!‘t(“1) «
8 b at
“It“\"'
Set -1 (--E.L_. t.l L’U.. P""
D - - B s -'_;';'," u---f’r. —
;. vp‘q‘}pj vw’q‘ \d”p‘j .dl\jpl\i
*] 8=

ST




iy T Vi Var
v, 19 "NyPy Py

A -< d Hj d3J dn‘ >
j+1 ' " .

£
Yy W
j

Then it follows from (2.9) and (3.2) that

T—

-1 ,-1
"j Dj Dj and Bjtl - “3010501 . ;
Therefore, 1
:
-1 _,=-1
- [ .
det(n“lnj) det(n’”njﬂuj ns ) 4
2 d'p
. (det.(n;”n‘l)) - 7-‘-131,}—
i b
which because of Bj - H;1 implies
. .
d'p ot 1 dip
ety T Teiaye, detain Ty, aaate, Sty
i S | j s R B 2 -
For the BFGS - method, 3 = 1. Assuming that
2
lla,ll
(3.7 -—11-—-« §  for some § and all
djp‘ - 0 \}

Powell [14] used (3.5) and (3.6) to prove that

lim inf”qjll -0 .

pe

A review of Powell's proof shows that it can be adapted for a general update formula of

type (2.5) if in addition to (3.7) we have

2
1=y, lwll :
(3.8) pallh | ~—9——~ < & for some §, > 0 and all
‘j qu1 A ! 1

and

(3.9) ¥y S 62 for some § > 1 and all j .

-




Unfortunately, it does not seem to be possible to determine any choice of the varameters 8

and 82, (other than 81 =1, 82 = 0, resulting in yj = 1) for which (3.&) and (2.9 can be
verified a priori: Indeed, if yj > 1, then (3.8) is satisfied. However, by Lemma ., woe have
then

8. fezd‘ud =0

g e i

which by (2.21) could result in an arbitrary large 'j‘ On the other hand, if we choose ﬁl

and B8 such that ‘j < 1 it does not seem to be possible to find a vositive lower bound for

2
yj. Thus (l—yj)/yj may become arbitrarily large. Even if these numbers arc bounded
"wjllz/w;qj could become large since we cannot show a priori that the sequence ‘Wj) is bound-
ed.

In order to overcome this difficulty we replace the matrix Hj by a matrix ”1("j) which

is defined as follows.

n p.p}
(3.10) Boln,) i, ¢l LD 5 o
a Jh 3 l—nj 0 395Py

P.P} quay
=——1_1n —-iri-”p .-;Liwq sy
slS s o
Setting

5, = Hj(nj)qj

we have

e %

"3

and with a modified step size

0, = (l=n,)o

9 ( nj‘ j
we obtain

x:H1 = xj 'ojsj = xj -ajsj .

Furthermore (2.15) shows that Hj+1 is not affected by the change in Hj'

)P




Denoting the inverse matrix of H (n,) by B (n’) we see from (3.1) that

259 |

. 'wl
1 B (n) = (1= )—Jri~1 .

WPy MYy
.99
=B, - n 5 "
b j qu1

Using the same argument as in the proof of Lemma 3 it is easy to verify that

dvt(B(nj)) = (l-nj)det(nj) v

(n,) and B

Therefore, replacina Bi and B by Bj 5 j#l(njOI)

AR
(1.6) we oObtain

2 2
1-n, a
( nl)ojllqjll { j||

respectively, in (3.3) and

(1.11) tr(R, (n, 1)) = tr(B,(n,)) - . E
141 jel ‘p d!
13 qj*j jpj J
2 2 ]
e .—1_ ”' ” 5 01¢1”91‘1” .
.
Yy Ny i+l 9541P541 ‘
and ;
3.12) d ) ~——J—J~T—— , -
v i T e T \ EERTIO Mt b i
If we assume that v, is the optimal step size, then it follows from (2.22) and (2.23)
that
\ 2l
"i - \j¢l°i0l' Pi*l - u,, 0101- ~i;—
which by (2.18) and (3.4) implies
oy, M2 lhw, 11
_J....fi‘l NG W
WaPyer Yy ¥y9y
Thus if we set
n1.] = l--\i i
b
then the sum of the last two terms in (3.11) is zero and i

1=n

J" -

)

18-
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it suffices to have the sum of the last two terms in (3.11) bounded from above, oj

Since
need only be an avproximation to the ontimal step size which satisfies the following condition.
Condition 1

The step size Oj is determined such that, for all j,

lla, a.lI? la,,, II?
3.13) (I=v )= 301705 - pae 280
- ] -t [} —
34954175595 "Hy41 095417 395) 95417541950 4
where 63 is an arbitrary positive constant and
9%,1P.
€. = ,%;l_l
o SR
For Yy, = 1 Condition 1 is trivially satisfied. If Oj is the optimal step size, then

= 0. Therefore, for every j, there is an interval, containing the optimal step size, such
cthat every 0. in this interval satisfies Condition 1.

Since H. .(g. . - €.d.) € span{q.,p.! and d'H .., - €.d,) =0 it follows that
j+1 %541 T 59 ARy Py 3410954~ 5594

g., .-€.d,

S. . =€E.P
(3.14) u, = -—_211—3—1—— and w. = W, —S—J%—LJ—
I ]1%5427¢584| 33 |I%5427%5P
Thus
2 2 2
Ho | S i
la00egty | Ml bel®
- Ll L}
Syt “J+1‘9J+1 e o T
and observing that pj+1 = sj+l/”sj+1,| = pj+lsj+l we deduce from (3.13) the inequality
2
1=y, [lwll allas 112
3 Y ¥ %5uPyn
Choosing
nj+1 it l-YJ

and assuming that the inequalities (3.7) and (3.13) are satisfied we obtain from (3.11) the re-

lation

-19-




(1-npe. llg.ll”

- st e L LR
tr(njol("ﬁbl)) £ vr (“i("i)) “;Vi o B

which shows that, for every j,

e (l—ni)rindl‘
- <ty - —_— i 8 +8
(3.:15) tr R1§1("j%l) < tx(BO(nn)) Lo q;p + (3L (S 48,)

where Bo(no) = Bo.

Using this upper bound for the trace of ) we can prove the followina key lemma.

Bi*l(“j¢l

Lemma 4
Suppose the inequalities (3.7) and (3.13) are satisfied. Then there is 54 > 0 such that
F for 3J = 0,1,...,
- |
3 legll™ 5 3 aip,
(3.16) A e 54 e
i=0 9iPi i=0 4%
I Proof:

Since B,(n,) is positive definite for all 1, we aobtain from (3.15)

n i

; (-l::’i)“i“gi“‘

- Al
i=0 b

< ER(BY) ¢ (A (S8 £ (D8

with 55 = tr(Bo) + §, * 63. Applying the geometric/arithmetic mean inequality we obtain the

0
relation
b .

i Q=npp fla. ll” -
(3.7 T Pt ¢ s:’l for 3§ = 0,1,...

i=0 e :
Observing that l’"j#l = Yi and using (3.12) we find

i d;pi dot‘“j#l(,‘j*\))
(3.18) n Uon.10.6'8 = Tt (B) e
gm0 TN P494Py oo

Next we deduce from (3.15) the inequality

(3.19) tr(B, (n, ) < (D8 .

AR R R |

=-20=-




T T

5 TNy

| Since the determinant of Bjol‘“jOl) is equal to the product of its eigenvaliu WEe Can u !
| 5 !
|
| ¥ (3.19) and the geometric/arithmetic mean inequality to find the relation !
I . |
(341) & :
det(njol(“j#l)) =
E i_ Combining (3.17), (3.18) and the above inequality we obtain the expression
2 ¢ n :
2 j ) A § y
i 3 llag ll A &J”((Ml)~5> s 3 9P,
" "."" _\ | "‘;"’_
- je0 93Py ~ 3 a MW sun TRy
g
3 .
< & ;1 i i
-— .
] i=0 4iPi |

where 64 is a suitable constant.

Since the inequality (3.13) is trivially satisfied if ‘j = 1, i.e. in the B’FPGS - method,
we need an additional condition for the step size ai in order to be able to draw further con-
clusions from the inequality (3.16).

Condition 2.

Let Yy and y* be constants satisfying the inequalities

e yey® €1, Yy =

& 4 and let ”i be determined such that

1) gil..p. € Y'9'p.
? 4 j41Py = ity

i+l X

& 4
1) F(x ) € Fix,) - 0.8 P, O . >0, and PFlx,. ..} < Flx, = 0.5 where
< 3 \“\j j“q)pJ - \j o \1 44 < 3 7 01

+
uj is the smallest positive number with

- \* - - . .
Flxj = 0ys,) = Fix,) \Ilsjsj||oivj

%
%
l
r )
|
3
z
il
|

P R TR 0




111) n) - ﬁ“ if possible with

A 3 g o +
Let o denote the optimal step size. Since o could be greater than o and
i i :
Condition 1 could force \“ to be close to “i we cannot insist on the inequality
"

Fix,. .) < FP(x,) - yllo,s.||lgp
‘1*1 (1 ¥ 3 ) 1

Under suitable assumptions it can be shown [15) that with

we have

(3.20) [VF(x -0, %s,) 'p, ] = o

:q‘H ¥ o»
1

Furthermore, it will be shown in the next section that for every update formula (2.5) with

.11:1, > 0, \‘1' = o" is an accevtable stev size for 1§ sufficiently large.

Using a step size which satisfies Conditions 1 and 2 we obtain the following result.

Lemma 5

Suppose the inequality (3.7) holds and \‘i satisfies the Conditions 1 and 2. Then

lim inf!!a\.i! G

AR
Proof:

Since for all i,

' No.s. llg'p 5.8
9P, 0,8, [|9.P, 0.8,
I ! [ F % ” H

d'p. q',p}n'.
G s 5 e

where 5,\ is a suitable constant, it follows from (3.16) that

(3.21) 4% J = 0slyues o

pEe————

P —

TP & L ey

S

S a2
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The seauence \P(x“‘ is decreasina. Therefore, ({x.} ¢ SO' 1f there is an infinite subset
J 10,1,...} and an & > 0 such that
D'Qj *e for 33
then it follows from p;qj'l < y¥ p;gj and the uniform continuity of VF(x) on SO that
| + .
min{ |lo.s.||, ”C.SAH >g, *0 forsoom £ >0 and J eI .
y i 4 o s S s 1

Because F(x) 1s bounded from below and

< - i ot
F(xj+l) Z P(xj) Yp%qj mxn(”ojsj||. hojst‘

this implies that P9, * 0 as § >, which by (3.21) proves that {ng!l\ is not bounded
away from zero.

We are now ready to prove the main convergence theorem.
“heorem 2

Let Assumvtion 1 and Conditions 1 and 2 be satisfied. Then

and every cluster point of the seauence (xi} is a global minimizer of F(x).

It has been shown in [(14] that if F(x) is convex and twice continuously differentiable
on S then the inequality (3.7) holds for all j. Therefore, we deduce from Lemma 5 that

there is an infinite subset J ¢ {0,1,...} and a 2z ¢ SO such that

VF(z) = 0 and xi % a8 e, Jed s

If iq‘i does not converge to zero, then the seaquence {xi) has a cluster point z%, say,
such that VF(z*) # 0. Since F(x) is convex this implies F(z*) > F(z). Because

P(xi‘,\ < F(x,). this contradiction shows that aj *0 as j » ~, Therefore, it follows from

the continuity of VF(x) and the convexity of F(x) on S0 that every cluster voint of txi‘

is a global minimizer of F(x).
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4. Superlinear convergence

Saal oy i

In order to prove that the sequence {xj} converges superlinearly to a global minimizer
of F(x) we require that in addition to the assumptions stated in the previous sections the
following assumption is satisfied.

Assumption 2.
The sequence {xj} converges to a point z. The Hessian matrix G = G(z) is positive

definite. There is a neighborhood Ul(z) such that the Lipschitz condition

(4.1) lex) - ctz)]] < nfx-z||

holds for all x « Ul(z), where L 1is a constant.

The above assumption implies that there are a neighborhood Uz(z) and constants 0 < y < n

such that, for every x ¢ Uz(z),

(4.2) u”y|l2 < y'G(x)y < n”y'lz for all y e E"

Therefore there is a neighborhood U(z) such that the inequalities (4.1) and (4.2) hold for
every x € U(z). By deleting finitely many members of the sequence {xj} if necessary, we may

assume without loss of generality that {xj} c U(z).

In proving that the sequence {xj} converges superlinearly we will use the weighted

matrices
1/2 -1 -1/2
G/H.(\'\.)Gl/z r G /ZB.(TI.)G / '
gy i)
where the symmetric positive definite matrix Gl/2 is the square root of G and
=1
G 2 (Gl/z) . As a first result we will show that
wj i tr(Gl/zﬂj(nj)Gl/z) i tr(G_l/sz(nj)G_l/z)

is bounded if we choose nj = 1-73._1 as before and impose an appropriate condition on the step

size 0,.
J

We observe that by (3.10) and (2.15)
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p.p! p.n' a.a!
e iR b o 1 W
(4.3 l')tlmiol) "imv) I-n, 0.,9'p, a:ip, Wi
1 o g Tt 5 %
L R T n n !
+ W i, S pE2: 141 3+l
;g ™ pa. .
|wiu1 1 ”i‘l 'iol'ul'nl
Therefore, choosing n| - l—\i_l and setting
plGp hl',\:—ld.
(@ A1
b I
w\_lw wiG w : .
T W il T T T
. 3
b wy w,‘ui wiu 141 I’iﬂli‘l
-1 -1
' o
= (l-y,)|= i (‘;.Aw.‘l - el .].,l_- ‘,’JA'I
Yy MYy aPin
(g, +ta,p.)'Glq,ta.p.) a'lGq
T e o Wb N o W i T
i quj ww1

u'Gu, a Gy n P! Gp
PR s (e v TR, L
: D W8y WYy 1T 9509540 P

(q,+a,p.) 'G(q +a p,)

D34 G
AT e - - MRS b . W WL Lo )

. 1] 3
Y39 Y P intialiag

wo deduce from (4.3) and (3.11) that for overy

w3 -1
piGp, +(1-n) "pTalG g,
(4. 4) " A e - W 5 R LT s B
jrl i (I=n.)e . 9'n i j | |
3 L
]
In ordor to show that the sequence (u'i‘. is bounded we have to derive bounds for M

terms Ty »‘i, ! P and “i' This will be done in'the following few lemmas.

Lomma o
Let G be o symmettic nonsingular (n,n)  matrix and let yv,x « ©

“Thon




xtaxeyaly

vigly
y'x

- 4 —

y'x

where v = y - (x.
Proof::
xtoxey 'y | xt iy eyt (xealy)
y'x y'x
- 2 4
Lemma 7

Under the assumptions stated the sequence

L
"X1 = z||
is bounded and the sum
(4.5) ¥ lei - z||
i=0

is finite.
Proof :

By Taylor's theorem there is a v1 on the line segment joining

2(F(x*)—F(z)) = (x‘—z)'u(vj)(xi-z)
Therefore,

(4.6) u”x‘-z”) L 2(F(x)-F(2)) < n“xrzllz

which implies

P(x1)-F(z) =
By Taylor's theorem and Condition 2 we have

*a'p - ) - q'p e q,¢
YHaPy 2 934gPy 2 aipy = nllogs, ||

=26~

2 and x‘ such that




and

Theretore,

(4.7)

(4.8)

A T e S TR

I YT

R

i

where the last

Setting

PSR

#

e

e P

we obhtain from

(4.9)

R

Since d!p, > u
i

P P N e oy o

Observing that

of the numbors

F(x,) = \n;u;sj = F(x'-nfs_) :AF(xj) - o;gisj + % n”o;sj|! .

L]
“

) fied

* o _—yh - '
min(”njsj|!, ”u)sjlll 2 min{1-y*, 2(1 Y))quj

aip
- L3 -y

Using Condition 2 once more we deduce from (4.6) and (4.7) the relation

. o” < = R 0 (‘
F(x(,)) - F2) < Flxg) - Fla) yqujmin(najsjll,ijst)

i~

o Bitey = RSN R
F(xj) F(2) = (ijj)

|~

. 2llg, 1 (alpp?
(Fix,) - F(z))<1 - Xid=yt) i 13
1| n 2 2
'\llxj-zll qull

q
(rex,) - r(.«.))(x - yamys A 1A

inoquality follows from the relation u”xj-zll = "qj"' see [12] for instance.

2
2 (gipy)

R N T e
"y 2 2
n® oyl
(4.8)
}
“Ri«l) - Ple) ¢ (F(xn) - F(z)) ‘20 Ci

it follows from (3.16) that there is &, < 1  such that

7
] <q”‘- 4 i
ol
n SO . - $ 3% Qsdysan - s
geo\ gl =77
9P, Lo Il we deduce from this inequality that for overy 1, it least half

V=




b/ U
EN

Ol ey s

are greater than or equal to 57. This implies that, for every

jo» at

)
Ci' i = 0,%0e.0), are less than or equal to some 3; < 1. Therefore, it
that
Flxy,,) - F(z) < sg(r(xo) ) S P S

which by (4.6) implies that the sume (4. ' is finite.

Lemm§~§

The assumptions stated imply that

i) lldj - opyll - O(ij -zl

ii) (r1 =)
0 J

is finite.

It o~ 3

i
Proof :

By Taylor's theorem

9,-q,
(4.10) d, = o s . Gp, + E,p,
3 Jlogs,]| ) i
o 1 |
where
L
Ej = {) G(xj + t(xj+l - xj\)dt -G
Hence
(4.11) e [| < max lax, + t(x - x,)) - gl
: sl e j i+l J
< max  |[n(x, + t(x - x,) - 2)|
T 0ctel ) i S

I

L max{”xj - z||, ”xﬂol -z|[) = O(Hx‘ - z|]

where the last relation follows from Lemma 7. Using the inequality d;pi

have therefore
2

(4.12) I

(\(lei - 2lI%Y

=28«

S

least

follows from (4.9)

half of the number

and Lemma ¢ we




4 ¥
1 ' )
which by Lemma 7 implies that the sum
)V “1 - 2)
j=0
E ‘ :
is finite.
Lemma_9
The assumptions stated imply that
||x1-zl|
M, = 0f- o
™
Proof :
By definition \\‘ = —d;q,/d;pr Therefore, usina (4.10) we have
§, = L‘ (2 a,p’Ge ] ‘2»' o . )
YT g 3 e TR o
3
d'q d'q .
1 R e
& w3 (a; =piB)q, ¢ ( pila, = B, p.))
. ‘l i’
widy aipy ) o e L iy H
T )2 " " 2
(diq dlq ‘alq.
- V__l.._, - ..J._L ¥ 9 J_J N = _J | v'E op)
wig, T Tdwp 235, P T de, ] BityPy
33 i il i : 3o
: el (2hagl fa, i
) . <
Mo L o LS L
— Y
wiqi ‘ ‘P' ({3490
i
llx -zl
» (Of =illrms
wig, &
: foon
where the last relation follows from (4.11) and “d‘ll <y dlpg >
In order to find an upver bound for the terms v‘i and :‘.i we ohuerve by (3.4) aw
the definition of wi' v" - L1 =0 |f n‘i is the optimal step size. Thuw w v ocontrol
v’i U -‘.‘ by imposing a condition on 0y which ensures that oy i sutficien lose to the
optimal step size.
5
condition 3.
g
¥ The step size \" is determined such that for all




2
AR el oy, | }

[1-y,] max{ e -, 5 - § v,
= = = -€.d, )
i }(qj” B N CVECC R KT A AR R "3
\
/ 23
1-v, M +le,|) e | (|ls, +e,|) i
GGk IRl o g R
- ' - - ' - ¥ - Vg
Y \(qj*1 DCRE RO A RTRECT R W AN | )V
where
- SO
¢, = —tdd
3 dip,
D il |
GQ is a positive constant and {Vi) is a seauence of positive numbers such that
o
Y,
=0
is finite and either o, = 0,* or BoaD < |VP(x,-0:*%s8,) ‘D,
TR l9501p51 < | (xy-04%e4) 'py |
Condition 3 is trivially satisfied if \i =1, i.e., for the BFGS - method. If ui is

the optimal step size then (j = 0. For every j, there is therefore an interval, containina

the optimal step size, such that every “j in this interval satisfies Condition 3.

Since by Lemma 7 the sum

©

I llx, - el
j=0 = -
is finite and ”q1|l = 0(”xj- z||) (see [12], for instance) it is possible to choose
\,»j - |[qj|| LO% § w Wpdpvas

In the next lemma it is shown that Condition 3 imvlies Condition 1.
Lemma 10

If aj satisfies Condition 3, then

i) “j satisfies Condition 1

ii) X (v, + £.) is finite.
a3 D

j

=30~
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Proof:
Ohserving that
2 '
1 C RO, L = = q! 3 - : < H
(4.13) (1_‘*1 .ji\) "i‘l(qiﬂ ' i\“\ \,_'}01“101"101 ‘1\!1“1 .3 \J“l 1‘\“]01

we obtain the relation

L)
(g i -t ) a
@1 TOT L T --,L‘._.Lij\ S Su
j '(QiOI‘ dj)“i’l(qﬁ 1-l1(i \1“1 4“1 a1
s -1 2
G (R idip,)
f1-v,| l - b TR L e +
: ;I(\,j d) “j*l Je1” jdi)l’ﬁl j*l il
) -1
'l d(- j jdjc "jul ]
- = 0(\‘)\‘
(qj§1 d)“jﬂ lljdj, 33
where the equality follows from (4.13), Condition 3 and the fact that || H = (\(l\x“1 *|

Replacing G-l with the unit matrix we deduce from (4.,14) that o satisfies Condition 1.

i

Morcover gince it follows from (3.14} that

I PR
. s b L e
1 ,q N\ ‘1‘1*‘) “j‘\‘qj‘l-( 1\1‘)

we obtain from (4.14) the inequality

(4.15) ¥ < §

' _ Sl R
i' 1(‘\‘ ‘ 1 (I‘I

for some constant .(N. Since it follows from (2.16), (3.4), and (3.14) that

(q o+, p,) 'Gl¢ ‘Gis
b M . U _u,-,ﬂ,t‘ e, JL;L
¥§% Yy g R e e e
we have similar to (4.14) the inequality
l\ -!f I ‘ 'p
(4.16) AR L5, [ ) SNy 1..--1“ _.L.__ 1_‘1)].--,.._...__. -
et ""m [ AL PICIRECT R CHRURRTIN

:\ Gp,=2t . plGs l
e J‘J‘ ittt | ¢ 500,
@y =6y gyl | ‘
-31=-




for some constant

Lemma 11

G

Using Condition 3 we will now establish the boundedness of the sequence

important consequences.

Let Assumptions 1 and 2 be satisfied and suppose that the step size \".

tions 2 and 3. Set "j =] ~ Yj-l' Then

Proof :

i)

(4.17)

(4.18)

i)  The sequence {y j‘ is bounded.

ii) The sequences (”H’(n*) ||‘ and i”ui-l(ni) I} are bounded.
1i1) "(l-nj)ojqj - Gpj” + Q0 as J v,

By (4.4) and Lemma ¢ we have for every j

< -2+ T, + ¥ + +
Yie1 = ¥y R B R
flx, -2l
< i N —4-—
< ¥y * 8y,llxymell B10*8110Yy * 84 wiag
where 612 and 613 are positive constants and the last inequality
(4.12), (4.159), (4.16), and Lemma ©. Because for every

v F
0, 3 1 Ml e ¢ i ¢ ol
PR G e <

we obtain from (4.17) the relation

§
13
ww < W,(l * (8, ¢ T) ”xj-zH + (8, 48

- 'Yy
3
SV Mo sullxi-zll‘ + 80
1=0
513
[\ - S - . > '
where 14 612 + and 615 “10 + 511 Therefore
n Vyog S0, ¢ g tn(l + B“Hxi-zﬂ + 8 0v).

i=0

the two sums

Since by Lemma 7 and Condition 1

ty ; and two

satisfies Condi-

follows trom




#

¥

T A I

e

T e sy A L g e

w o~

i ||xj-z!! and BT

“ .
j=0 jm0 7
are finite this shows that (wj) is bounded.
11) Because Hj(n].) and Hj-l(nj) are positive definite for every j .and v, ooy
to the sum of the eigenvalues of “j(nj) and Hj-l(nj) the second :tatomon* Hf the
theorem follows from the boundedness of (wj).

iii1) By (4.4) we have for every j

p;GpiQ(l-ni)zoiin-lgi i
(4.19) R T -8 2N, ﬂ (Y =2+ v ¢ & +uy)
i=0 1'P193Py i=0 L TE R
Since by Lemmas 7 through 10, inequality (4.18) and part i) of the theoro . wo hov
o~
(4.20) I (x. = 2% @ + € +u) <=
jmo 3 j : j

the inexquality (4.19) implies that

. 2.2 ,.~1
pPiGP . +(1-n.) 0 .g'G g
(4.21) - TR B S U T
o . :
O gl b

Ry the second part of the theorem

2

“'"1)‘\1"1"_1 = (l-nj) 0 q,}Hi(ni)q

-t

3

is bounded away from zero. Therefore it follows from (4.21) and lewmn e

”(l-n Yo g, = Gp ” » 0 as § » «
- i i Al

Botore we can use the above results to prove the superlinear convergence o oqQueng
(x“ to 2z we need some properties of the two sequences ni': and 'n‘i‘. There are estal
lished in the following two lemmas.

Lewma 12

Let Assumptions 1 and 2 and Conditions 2 and 3 be satistied. Then for o\

(2.5) with 6‘ + &, # 0 the following statements hold,

-33=




lay,, IV
1=y, | = o(min{{—2_ ), (d'.q.):)\
] ”qjll 3173
Proof
Since
(4.2

d!q. = p'G + (4, - Gp.)"qg.
Y T PO,y ¢ - ey ey
= (1-n.)p.9}q. + (Gp, - (1=n,)p.g.)'q. + (d. - Gp.)'q.
H-nylejeiq, + (apy - ( e b i Sl Tl L
= (Gp, = (l=n,)o.9,)%, + (4, = G.)"'q.
@y = Q=nyleg, e Bl Tl U

1t follows from Lemmas 8 and 11 that

(4.23) dj.'qi * 0 ag J e

Let SXS, * 0. Because

' T oq | » ' S 3 > 0
laldipj + b2djujd1‘ 3 ]Rlldjpj > lbllu (
and, by part 1i) of Lemma 11, H;q] is bounded away from zero it follows from (

(4.23) that ‘j *1 as j » «, Now assume that & = 0. By (2.20) and (2.17)

1
1 p.alp, £.9ip (d!q.)2
(4.24) —-—-—‘LJ-—J;d'iuid. =1 »—1—1—1——3—1—
Y5 tgpy® 133 @p® M9

.
alp tdlg,) lla !l
o .(_..LL__. b i

195l (d;pi)%;q1 51l

95
Ly - W (d'c _\‘
€Y % slﬁkvlifii.a_,ll} > 1
3 nq' . - . ‘ -
3 ("1"1) qui j-1
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1) and







3

\ B .
» ™ {8+
2 1

b (4.27) g.atp hr’_d'u_d.' , o d'p 1R, +B., 1
s e T B B R e Wi Al 2 z
for 1 suf ficiently large. gince by definition
(g,~9, \\'q 4313 o L ﬂqv‘ﬂ
alq, = - 1. o L2 . e S -4,‘,‘
i Hto,s. \lo.s, Ga
\[‘-““t! 1195851 IER o385l

is bounded 1t follows from (Rl and (4.27) that

and, under Assumption 2, (9! i

oy, 1\ :
_,.Jf——- x (dlsqs\*\) 1

/
fx - \." . omsm( R
CAI

Lemma 13
Let Assumptions 1 and 2 and conditions 2 and 3 be catisfied. Then for every update formula

(2.5) with 8 ¢ 6, ¥ 0 and for i sufficiently larae

\% .-d‘,.‘)' g S *g'p
(xy 1) 'Py = Y*aiPy

- O < PR, - ots, (lalp.
Fix, o 0 < (x;) w\‘.‘jgi!uj&j

Proof :

First assume that B8, = 0. i.e. \‘ = 1. Then n’j' = 1. By Taylor's theorem there is N
in the set

{4.28) {x | x=xy - sy o<t sl

such that

v - g ty, o= . - valv ) s
‘_(xj Q‘) P‘ qﬁp1 }\’* (\.)).‘S

Hsj\\

- 'e ~ 6 .n\.-a-.,‘_,_q,h,
ujpi “'\“i (n. (¢ \(v] Py \](q) 03 “‘

7 ot this implies that

and “Gpj - oqu\\\ » Q0
Furthermore

gince by Lemma 11, [lsyll = otaipy)
, there 18 \.'i in the set

for sufficiently larae.

v a . 5 < - .
\r-‘(x1 sj\ ‘j oy quj
(4.28) such that
s, Il*
) - "\\9\“0;“‘ s b

4.29) - 8,) = pAGY 1P
( I"(x1 “1‘ P(xi 5 }j«(sgu

=36~




Since

‘G(y.)p. = p.g'pP. + (Gp. - p.9.) ‘P, + pi(Gly.) - Glp,
p] YJ p] Jng] ) b O J p] J i

it follows from (4.29) and Lemma 11 that

1 o | i
- - g < ~lls.lglp. & - —==2— (llep;-p.a.ll - | =G
F(xj Sj) F(x]) < Hsjllquj(z 2quj (ol P4 =Py9y ) liGly;)

|A

-vHstquj

for j sufficiently large.

Now suppose that 62 # 0. Then it follows from (3.20) that

UF(x. - o*s.)'p. < Y*g'Pp.
R

for j sufficiently large. Finally by Taylor's theorem there is

v.e (x| x=x,-tlots,), 0 <t <1}
] J 983 VR

such that
lots. |l
F(x.-o*s,) - F(x.) = -Hoﬁs.Hq!D. +-——l—l——-D!G(v,)nA
= [l i ] s s [l i) 2 D)
Since
g's. gls,
(4.30) o = ) 1)

= S(F(x.-s.)-F(x,)+g's.)  siG(y.)s.
- Lo T ks i i
for some Yj in the set (4.28), the above equality and (4.30) imply that
F(x, - o*s,) - F(x,) - L Hc?s.llg!p. -+ 0 as S s A
J 33 D 2 3 i s

1
Because Yy < this completes the proof.

We are now ready to prove the main result of this section.

Theorem 3

Let Assumptions 1 and 2 and Conditions 2 and 3 be satisfied. Then for eve:

la (2.5) with Bl » 82 # 0 the following statements hold.

=3

e — A .

L N Y s e AT AL B




r-—-- = . e

i) The sequences {Hﬂjl\} and {HH;1|l) are bounded.

g, lley,y -2l
ii L as j > =, e as j > .
B e ey~ 0 %

iii) The two sums

Il o~1 8

(o} s § ()
L\ P!

are finite.
iv) If 8182 >0 or 8182 < 0 and Yj +1 as j + =, then
oj = 1 agl j >« and Sj &30 asl g e

where aj denotes the optimal step size.

B8
v) If B.8B, <0 and y. > - =L as j » < then
L2 5] Bz
8 B
2 : - 2 :
@, F=i—="ag firlel and N, > ioia=" ds ) e

J B j 8

X Q\1

w1y Tf 8182 P Gy 6162 < 0 and Yj -1 as j > « then

for j sufficiently large, provided ”ng = O(vj).

Proof :

The first statement of the theorem follows immediately from part ii) of Lemma 11 and parts
i) and ii) of Lemma 12.

Since 1-~nj =y it follows from (4.19) and (4.20) that the sum

=1

2 2 -1
® 'Gp.+Y. .9iG "g.
7 (pl P13 1P393¢ 95 >
¥3-1°593P;

3=0

is finite. By Lemmas 6 and 1l this implies




|
|
|
|

w

D | T
j=0 3=1"373

(4.31) £ (;pj“z i

Furthemore it tollows from (4.10) and (4.11) that

lla, H

0,8, flo,s, I
b 52 =G ¢ e == Il = otllx, 2
|,\, i < | ”q i |q1““ ”b1” “qu ||Fjl| oclf ; 1

(4.32)

First assume that B8, =0, i.e., \1, =1, for j=0,1,2,... . Then Lemma 13 implies that
(4.133) "j'“’] = 1 for 1 sufficiently large
Since

lla || g 3
1 g = Sl LS Y
llejay - ooyl ]rs m 1 eyl ™ & Ty b

and, by the first part of the theorem, ‘”“i”/”ﬁ”] is bounded we deduce from (4.5), (4.31),

4.32), and (4.33) that

llas o I H AN
(4.34) il .0 as §o e and ) il B
IENL y=0 ||1 i

Now suppose that g # 0. Then it follows from Condition 3 that eithe:

.ot or |q!

X B VF(x, = o*s)'p,
i i ity ‘ (i i '1‘

By (3.20) this implies

P
(4.35) J’_l._

Ila H

= 0(“."1”)

Furthermoro, because (ece [12]) for instance)

(4.36) H«l;” . U(Hx‘—zH) and Hxi-zH = O(H‘HH)

we conclude from (4.35) and Lemma 7 that

= lat, ;|
e T LG
jmo 1194l
Hy (4.22), (4.131), and Lemmas 7 and 8 we have
- A0




which implies

Ry
(4.38) y J'.‘.J) A
y=o \ 941l

since, under Assumption 2, {”"-‘”.'H"‘R‘”‘ is bounded away from zervo.

Observing that a ¢ ospanip a,, w,. !} we deduce {from the first part of the theorem that
(KR! T |
Al ] <
. “_‘hz;_ﬂ - l\(,,,m?‘.‘ .*.‘_".LI, LTIV
19yl [t i lay i
7 i i

Therefore, the second and third part of the theorem follows from (4.34) and (4.3¢) throuah
(4.3,
In order to prove the next two parts of the theovem we use Taylor's theorem to show that

there 1is

v, € {x | x = x - t0,8,)) 0« t < 1}

i i L |
such that
Y a'p Y pyatp
(4.40) Vs ‘.‘. s ﬁ‘.l_t“‘_.)‘.i, > .);'__‘, J ‘J, J
i }\‘h(\\ .1‘ 1 ih(\i 1 i
PGP, H(y P ,3,~Gp,) 'p
N W WAL U\ e
pi(.p’n\’(u(\, “G p’
Since (3(\") - G *0 as 3 Y v, it follows from Lemma 11 that
(4.41) G, *il a8 J o=

If 8, =0, then y, =1 and v“’. = 1 for all § and the parts iv) and v) of the theovem

2 i

follow from (4.41) and temmas 12 and 13, fet ¢ # O, then we abtain from (4.30) and (4,40

B

the relation

“q0=




qlp, g'o,
B o - 61‘ e ‘ 'G(j J)q “p c(jvj)s
g Pieiagtty - RyRiNgiy
flg,ll p1(G(v ) ~Gly v,
ik
5 nq i nsj|| ®} s<y 5 »(pjc(v W)

|lgj|| llG(vj)-G(yj)H

”9j' "sj” ul

fn

Finally we deduce from Condition 3 and Taylor's theorem the inequalities

(4.43) ullsgll log-a,1 < lag, ol < [VPGxj-03s.) oy ] < nllsgll Jog-o,] .
Therefore the parts iv) and v) of the theorem are a consequence of Lemmas 12, 131 1 (4.41)

through (4.43).
To complete the proof of the theorem we observe that in view of Lemma 13 (¢ iffices to
show that if we set Oj = 0;, then the resulting Yj and gj*l

of Condition 3 for j sufficiently large.

satisfy the two ‘aequalites

ol - ' = > fi e i { ¢ SO
Because (gj+l tjdj) pj 07-3%pj > u and de|| < n it follows that th men

s - wip sl

is bounded away from zero. By the first part of the theorem this implies that tno covenc
2
g
; llas, :
(q). t.d ) H“l(‘? il ejdj)

is I vnded. Thevefore we obtain from part iii) of Lemma 12 the relation

(4.44) l]-y I . )'j' ”__j‘*ll P 0(”214_1” lu)’lpl‘

j (q d ) Hjﬂ(q”1 j 1 : "qj‘lz ]]qj.lh
since “‘;J[ = O(vi), “qi*l'l/”qﬁl‘ * 0 as j » = and, by (3.20), lq;’lni\ 'lw} )
follows from (4.44) that the first inequality of Condition 3 is satisfied for FTlciontly

large. A completely anologuous argument shows that the second inequality is el

y if sufficiently large.
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